Twisted Alexander polynomials and surjectivity of a group homomorphism

نویسندگان

  • Teruaki Kitano
  • Masaaki Suzuki
  • Masaaki Wada
چکیده

If ϕ : G → G ′ is a surjective homomorphism, we prove that the twisted Alexander polynomial of G is divisible by the twisted Alexander polynomial of G ′. As an application, we show non-existence of surjective homomorphism between certain knot groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Alexander Polynomial and Surjectivity of a Group Homomorphism

If φ : G → G is a surjective homomorphism, we prove that the twisted Alexander polynomial of G is divisible by the twisted Alexander polynomial of G. As an application, we show non-existence of surjective homomorphism between certain knot groups.

متن کامل

Twisted Alexander invariant and a partial order in the knot table

Twisted Alexander invariant is defined for a finitely presentable group G and a representation of G and a surjective homomorphism of G to a free abelian group. In this talk, we introduce some examples and some properties of the twisted Alexander invariant. Moreover, as an application, we consider a partial order on the set of prime knots. Let K be a knot and G(K) the knot group. For two prime k...

متن کامل

New Obstructions for the Surjectivity of the Johnson Homomorphism of the Automorphism Group of a Free Group

In this paper we construct new obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group. We also determine the structure of the cokernel of the Johnson homomorphism for degree 2 or 3.

متن کامل

Representations of Knot Groups and Twisted Alexander Polynomials

We present a twisted version of the Alexander polynomial associated with a matrix representation of the knot group. Examples of two knots with the same Alexander module but different twisted Alexander polynomials are given.

متن کامل

Crowell’s Derived Group and Twisted Polynomials

The derived group of a permutation representation, introduced by R.H. Crowell, unites many notions of knot theory. We survey Crowell’s construction, and offer new applications. The twisted Alexander group of a knot is defined. Using it, we obtain twisted Alexander modules and polynomials. Also, we extend a well-known theorem of Neuwirth and Stallings giving necessary and sufficient conditions f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005